The acceleration versus time graph of a particle moving along a Question 06. straight line is shown in the figure. Draw the respective velocity-time graph. Given v = 0 at t = 0.

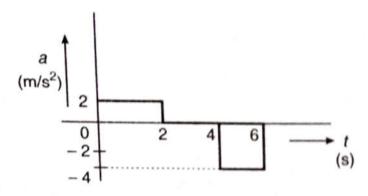


Fig. 6.33

Solution From t = 0 to t = 2s, a = +2 m/s²

$$\therefore$$
 $v = at = 2t$

or v-t graph is a straight line passing through origin with slope 2 m/s^2 .

At the end of 2 s,

$$v = 2 \times 2 = 4 \text{ m/s}$$

 $t = 2 \text{ to } 4 \text{ s}, a = 0$

From

Hence, v = 4 m/s will remain constant.

From t = 4 to 6 s, a = -4 m/s².

$$v = u - at = 4 - 4t$$

$$v = u - at = 4 - 4t$$

v = 0 at t = 1s or at 5 s from origin.

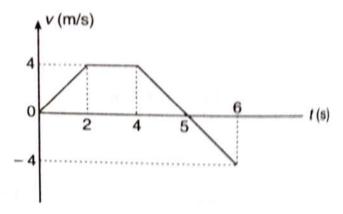


Fig. 6.34

(with t = 0 at 4 s)

At the end of 6 s (or t = 2 s) v = -4 m/s. Corresponding v-t graph is as shown in Fig. 6.34.